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I n t r o d u c t i o n  

Kewman‘s numerical technique (1-4) has been used extensivelj- to solve two- 

point boundary value problems consisting of coupled. ordinary differential equa- 

tions. Unfortunately, his method does not always yield a solution to  a system of 

independent equations. Sometimes his algorithm (B.4XD) signals incorrectly that 

the coefficient matrix is singular (e.g.. DETERMIXAIYT=O AT 3=2).  In addition, 

no solution is obtained to  the system of equations. This problem is referred to  as 

the ”zero determinant problem” throughout the rest of this note. The cause of the 

problem, which has not been identified. seems to be numerical and related to the 

u-ay in which the BAND algorithm manipulates the system of matrix equations. 

Fortunately, an algorithm by deBoor (5) has been successful in some cases where 

BAND fails. 

Example  S y s t e m  

While debugging a computer program for a model of the lithium/thionyl 

chloride cell? the authors suspected that the BAND algorithm was not working 

correctly because of the zero determinant problem. Initially, six equations and six 

unknowns were used to describe the system shown in Fig. 1 in one spatial dimension 

(z). Later, this system was reduced to two equations and two unknowns. Even this 

reduced system exhibited the zero determinant problem. 

The six equation set and the two equation set are referred to as the “full set” 

and the “reduced set,’’ respectively. The full set of equations for the region and 

boundaries shown in Fig. 1 are given in Table I. A description of the equations and 

unknowns in Table I is beyond the scope of this note. Table I1 is a listing of the 

values used for the constants appearing in these equations. The unknowns v’, e ,  
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i z .  and and Eq. [2] - [ 5 ] ,  [8] - !llj, and j14! - [I;: can be eliminated from the 

full set because these equations are not coupled with the remaining equations. The 

reduced set consists of two equations and two unknowns ( c  and @ 2 )  as shown in 

Table 111. The initial condition for c, for both the full set and the reduced set, is 

c(0, z) = C, , , t .  

Solut ion Methods 

The ordinary and partial differential equations listed above were written 

in finite difference form and programmed for solution using the procedure for 

Newman's BAND algorithm (2.  3j. Implicit stepping ( S j  was used for the time 

derivatives. To use deBoor's solver, instead of B A W D ,  several subprograms were 

written to make the transition simple. These subprograms along with the examples 

given here are available from the authors. 

Kewman's algorithm and deBoor's solver were written specifically to  solve 

systems having banded coefficient matrices. A full-matrix solver called LEQTIF (7) 

was used to  provide a basis for corriparison between the these two baiided system 

.. solvers. 

Observa t ions  

The zero determinant problem of Newman's BAND algorithm is very sensitive 

to the finite difference expression used for the gradient of @ 2  in Eq. [12] and to the 

location of the origin of the coordinate system. The gradient of @ 2 ,  d@z/dz, can 

be approximated with central, forward, or backward finite difference expressions as 
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fdll ow s : 

Central difference (CD) 

Forward difference (FD)  

Backward difference (BD) 

These difference expressions are accurate to order h2.  h. and h: respectively. Three 

point forward and backward differences. accurate to h 2 .  were used for derivative 

boundary conditions such as Eq. [2:. A ten node grid is shown if Fig. 1 where 

the  numbering of the nodes depends on the origin of the coordinate system. The 

system of equations can be solved by first evaluating the set of equations at z = a 

and proceeding to  z = b (coordinate system sfl, CS1) G: by starting at z = b and 

proceeding to z = a (coordinate system if2, CS2). Several attempts were made to  

solve the example system using combinations of the following: the full set or the 

reduced set of equations; one of the difference formulas, CD, FD, or BD; one of the 

two coordinate systems: CS1 or CS2: and Newman’s algorithm or deBoor’s solver. 

A run was designated successful when the solution shown in Fig. 2 was obtained, a 

failure when the solver indicated that the numerical system was singular (;.e., a zero 

determinant was indicated). and nonconvergent if convergence was not achieved. 

- 

Table IV shows that deBoor’s solver works in some instances where Newman’s 

technique does not, but never the other way around. Note that for both sets of 
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equations for CS1 deBoor's solver fails for the FD case. whereas for CS2 deBoor's 

solver fails for the BD case. Thus the failure of deBoor's solver is at least consistent 

with the coordinate system. On the other hand, the results of Kewman's technique 

are different when using either the full set or the reduced set, even in cases which 

are otherwise identical. 

Two items that were thought to be responsible for the zero determinant problem 

were the initial guesses of the unknowns and the precision used for the variables in 

the computer program. To test the first of these. the initial guesses were set equal 

t o  the values obtained from the successful CD cases. This change had a slight effect 

on the results in Table IV: three cases were changed from failures t o  nonconvergent 

cases. The precision of the variables was checked by =sing different computers: 

a HP-9000 (series 500) and a V24X 8800. Dmh!e precisic~~? YEP used on the HP 

and quadruple precision on the VAX. The same results were obtained from both 

computers. 

A few other variations on some of the cases in Table 11: were tried t o  determine 

if these results were obtained consistently. The number of nodes was increased 

from 10 to 100, thus decreasing h by an order of magnitude, and the time step 

was decreased from 1 x seconds. These changes had no 

effect on the cases studied. Next, the ordering of the equations in the full set was 

changed. Although this change had no effect on the failure or success of a run, 

it was observed that Newman's technique behaved in a slightly different manner. 

That  is, the determinant was flagged as zero at different nodes. For example, for 

CS1 and CD, the determinant was signalled as zero at node 2 for one particular 

ordering of the equations describing the reservoir (Eq. 171, [12], [9], [lo],  [ll], and 

[8j) . When the equations were reordered (Eq. [TI, [8], [9], [lo],  [ll], and [12]) the 

determinant was signalled as zero at both nodes 2 and 10. 

seconds t o  1 x 

4 



Although deBoor‘s solver fails fewer times than does KeKman’s technique. 

deBoor‘s method still fails in some cases. To determine if these failures were due to 

limitations within deBoor’s method a full-matrix solver. LEQTIF from the IpIlSL 

librarj- (7). was used to solve the  reduced set. LEOTIF and deBoor‘s method 

exhibited the same performance as shown in Table 11.. 

-4s far as CPT time is concerned. little difference exists between the two 

methods. For six unknowns and 100 nodes deBoor‘s solver requires 22.72 seconds 

of CPI‘ time and Xewman’s technique requires 23.91 seconds on the JTAX 8800. 

However. the storage requirements are much greater for deBoor‘s algorithm than 

for Kewman‘s algorithm. When many unknowns and nodes are involved, the 

large amount of memory required by deBoor’s algorithm may become prohibitive 

especially for microcomputers. 

Conclusion 

Newman’s numerical technique does not yield a solution to a given set of 

equations in some instances. For some ol  these ca5eb in which Xewman’s technique 

does not work a solver by deBoor ( 5 )  does work and therefore it seems to be a more 

robust algorithm. Consequently, it is recommended that deBoor’s solver be used 

during program development; later, one may wish to switch to Newman’s technique 

t o  save memory: especially if a large number of unknowns and node points are 

involved. 

. 
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List of Symbols 

C 

C i n i t  

CO 

C r e  f 

D 
F 
h 
zo,we,re f 

i 2  

I 

concentration of electrol!-te. mol i c m 3  
initial concentration of electrolyte, moZ/cm3 
concentration of the solvent, m o l / c m 3  
reference concentration of electrolyte: m o l /  cm3  
diffusion coefficient of the binary electrolyte: c m 2  / s  

Faraday's constant, 96487 C l m o l  of electrons 
distance between successive nodes: c m  
exchange current density of working electrode reaction at  c,,f, A / c m 2  
superficial current density in the solution phase, A / c m 2  
total cell current density (applied), A /  c m 2  
jth node 
number of electrons transferred in the electrode reaction 
universal gas constant, 8.3143 J i m o l  Ii 
stoichiometric coefficient of species i 
absolute temperature, Ii 
time, s 
transference number of species i relative to  V' 
Potential of the electrode electrochemical reaction 
relative to the reference electrode, 1' 
partial molar volume of electrolyte, c m 3  / m o l  
partial molar volume of solvent, c m 3  / m o l  
superficial volume average velocityv: cm, /s  
radial dimension, c m  
charge number of species i 

Greek Symbols 

transfer coefficient in the anodic direction 
transfer coefficient in the cathodic direction 
exponent for the concentration ratio in the Butler-Volmer equation 
porosity or void volume fraction 
conductivity of the solution, 0-lcm-l 
number of cations and anions produced by dissociation of electrolyte 
number of cations produced by dissociation of electrolyte 
potential in the matrix phase, V 
potential in the electrolyte, V 
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List of Symbols (Continued) 

Subscripts 

0 

WE. 

f 
I 

1 
2 

solvent 
working electrode 
cation 
solid matrix phase 
electrolyte phase 
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Table I. Full Set 

Surface of reference electrode: 

Reservoir: 
ac 
- = D V C  - v * (CV') 
at 

i z  = 1 

Surface of working electrode: 

s+ I t Y I  -DVC + ~ - - -- 
z+u+F nv+F 

' v = o  
€ = l  

i z  = I 

[l] 

12: 

I31 
141 

151 

[71 
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Table 11. Parameter values used to solve the example system 

PA R 4  M ET E R VALUE 

Gap between electrodes 
Number of node points 
Time step 
Applied current density, I 
Diffusion coefficient, D 
Electrolyte conductivity, IC 
Partial molar volume of electrolyte, 1; 
Partial molar volume of solvent: Po 
‘Transference number of + species, t’, 
Dissociation constant of -k species, v, 
Stoichiometric coefficient of t species, s, 
Stoichiometric coefficient of solvent. so 
Number of electrons transferred. n 
Exchange current density, io,ue,re. 
Anodic transfer coefficient, aa 
Cathodic transfer coefficient, a ,  
Working electrode reference potential, 17,.ref.ue 
Concentration exponent in Butler-Volmer Eq., y 
Reference electrolyte concentration, c,,f 
Initial electrolyte concentration. ctq2t 

- 

0.01 cm 
10 
0.0001 s 
0.08 A/cm2 
3.35 x cm2/s 
0.0146 ohm-’cm-’ 
77.97 cm3 ;mol 
72.63 cm3 /‘mol 
0.5 
1 .o 
-2.0 
-1.0 
2 
0.001 X/cm2 
1 .o 
1 .o 
0.0 v 
1 .o 
0.001 mol/cm3 
0.001 mol/cm3 



Table 111. Reduced Set 

Surface of reference electrode: 

Reservoir: 
a C  
- = D T 2 c  
at 

Eq. [12] 
Surface of working electrode: 



Table I17. Comparison of Newman's algorithm and deBoor's 
solver when applied to the example system 

(XC - nonconvergent. F - failure. R - successful run) 

Method 

-Full Set- -Reduced Set- 
Coordinate 
System BD CD FD BD CD FD 

Kewman's B A W D  i f 1  R F F  R F F* 

# 2  F F F  N C  R R 

deBoor's solver + l  R R F  R R F* 

F R R  F* R R 

LEQTIF (IMSL) # l  

# 2  

R R F' 

F E R  

* These became NC when using the solution as the initial guess. 



List of Figure Captions 

Fig. 1 Schematic representation of the example system - 

two electrodes separated by an electrolyte. 

Fig. 2 Example system solution - electrolyte concentration 

and solution potential profiles. 
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